
RTC-Tools Hydraulic Structures
Documentation

Release 0.0.1

Tjerk Vreeken, Klaudia Horvath, et al.

Aug 15, 2017

User Documentation

1 Contents: 1
1.1 Getting Started . 1
1.2 Support . 2
1.3 Python API . 2
1.4 Modelica API . 4
1.5 Examples . 8

2 Indices and tables 31

Python Module Index 33

i

ii

CHAPTER 1

Contents:

Getting Started

Installation

This package requires RTC-Tools 2 to be installed, including the ChannelFlow library.

Installation of the RTC-Tools Hydraulic Structures library then consists of the following steps:

1. Download the source code
https://gitlab.com/deltares/rtc-tools-hydraulic-structures.git

2. Move into the downloaded directory
cd rtc-tools-hydraulic structures

3. Install the Python modules
python -m pip install .

The Modelica library is not installed automatically, and needs to be copied manually. The location of RTC-
Tools’s Modelica library root is typically something like C:\RTCTools2\mo on Windows. Copy the modelica/
Deltares folder to this location.

Running an example

To make sure that everything is set-up correctly, you can run one of the example cases in examples/:

cd /path/to/rtc-tools-hydraulic-structures/examples/simple-pumping-station/src

python example.py

You will see the progress of RTC-Tools in your shell. If all is well, you should see something like the following output.

1

https://gitlab.com/deltares/rtc-tools.git
https://gitlab.com/deltares/rtc-tools-channel-flow.git

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Contribute

You can contribute to this code through Pull Request on GitLab. Please, make sure that your code is coming with unit
tests to ensure full coverage and continuous integration in the API.

Support

Raise any issue on GitLab such that we can address your problem.

Python API

Pumping Station Mixin

class rtctools_hydraulic_structures.pumping_station_mixin.Pump(optimization_problem,
symbol)

Bases: rtctools_hydraulic_structures.util._ObjectParameterWrapper

Python Pump object as an interface to the Pump object in the model.

discharge()
Get the state corresponding to the pump discharge.

Returns MX expression of the pump discharge.

head()
Get the state corresponding to the pump head. This depends on the head_option that was specified by
the user.

Returns MX expression of the pump head.

2 Chapter 1. Contents:

https://gitlab.com/deltares/rtc-tools-hydraulic-structures/merge_requests
https://gitlab.com/deltares/rtc-tools-hydraulic-structures/issues

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

class rtctools_hydraulic_structures.pumping_station_mixin.Resistance(optimization_problem,
symbol)

Bases: rtctools_hydraulic_structures.util._ObjectParameterWrapper

Python Resistance object as an interface to the Resistance object in the model.

discharge()
Get the state corresponding to the discharge through the resistance.

Returns MX expression of the discharge.

head_loss()
Get the state corresponding to the head loss over the resistance.

Returns MX expression of the head loss.

class rtctools_hydraulic_structures.pumping_station_mixin.PumpingStation(optimization_problem,
sym-
bol,
pump_symbols=None,
**kwargs)

Bases: rtctools_hydraulic_structures.util._ObjectParameterWrapper

Python PumpingStation object as an interface to the PumpingStation object in the model.

__init__(optimization_problem, symbol, pump_symbols=None, **kwargs)
Initialize the pumping station object.

Parameters

• optimization_problem – OptimizationProblem instance.

• symbol – Symbol name of the pumping station in the model.

• pump_symbols – Symbol names of the pumps in the pumping station.

pumps()
Get a list of Pump objects that are part of this pumping station in the model.

Returns List of Pump objects.

resistances()
Get a list of Resistance objects that are part of this pumping station in the model.

Returns List of Resistance objects.

class rtctools_hydraulic_structures.pumping_station_mixin.PumpingStationMixin(*args,
**kwargs)

Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds handling of PumpingStation objects in your model to your optimization problem.

Relevant parameters and variables are read from the model, and from this data a set of constraints and objectives
are automatically generated to minimize cost.

pumping_stations()
User problem returns list of PumpingStation objects.

Returns A list of pumping stations.

rtctools_hydraulic_structures.pumping_station_mixin.plot_operating_points(optimization_problem,
out-
put_folder,
plot_expanded_working_area=True)

Plot the working area of each pump with its operating points.

1.3. Python API 3

http://rtc-tools.readthedocs.io/en/latest/optimization/basics.html#rtctools.optimization.optimization_problem.OptimizationProblem
http://rtc-tools.readthedocs.io/en/latest/optimization/basics.html#rtctools.optimization.optimization_problem.OptimizationProblem

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Weir Mixin

class rtctools_hydraulic_structures.weir_mixin.Weir(optimization_problem, name)
Bases: rtctools_hydraulic_structures.util._ObjectParameterWrapper

Python Weir object as an interface to the Weir object in the model.

In the optimization, the weir flow is implemented as constraints. It means that the optimization calculated a flow
(not weir height!), that is forced by the constraints to be a physically possible weir flow.

discharge()
Get the state corresponding to the weir discharge.

Returns MX expression of the weir discharge.

class rtctools_hydraulic_structures.weir_mixin.WeirMixin(*args, **kwargs)
Bases: rtctools.optimization.optimization_problem.OptimizationProblem

Adds handling of Weir objects in your model to your optimization problem.

weirs()
User problem returns list of Weir objects.

Returns A list of weirs.

Modelica API

Pumping Station

The Modelica library Deltares.HydraulicStructures.PumpingStation is an extension to the
Deltares.ChannelFlow.Hydraulic library, which is part of the ChannelFlow library. It consists of the fol-
lowing components:

Pump A pump model with a QHP (discharge, head, power) relationship, to be used for optimization of e.g. costs. It
extends Deltares.ChannelFlow.Hydraulic.Structures.Pump

Resistance Quadratic resistance.

PumpingStation Encapsulating class for Pump and Resistance objects.

Note: Pump and Resistance objects should always be placed inside a PumpingStation object.

Pump

class Pump : Deltares::ChannelFlow::Hydraulic::Structures::Pump
Represents a single pump object. Because the power of the pump is seldom a linear function of Q
and H, this class is wrapped by the Python API’s Pump which turns the power equation specified by
power_coefficients into a set of inequality constraints:

𝑃 ≥ 𝐶1,1 + 𝐶1,2𝑄+ . . .

lim
𝑄→0

𝑃 = 0

With minimization of pumping costs (i.e. power), the optimization results will satisfy the first inequality con-
straint as if it was an equality constraint.

4 Chapter 1. Contents:

http://rtc-tools.readthedocs.io/en/latest/optimization/basics.html#rtctools.optimization.optimization_problem.OptimizationProblem
https://gitlab.com/deltares/rtc-tools-channel-flow.git

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Real power_coefficients[:, :]
The power coefficients describe the relationship between the discharge, head and power. For example, one
can consider a fit of the pump power of the general form:

𝑃 = 𝐶1,1 + 𝐶1,2𝑄+ 𝐶2,1𝐻 + 𝐶2,2𝑄𝐻 + 𝐶1,3𝑄
2 + . . .

The power coefficients matrix corresponds to the coefficients C in the equation above. To guarantee that
optimization finds a good and stable solution, we require the coefficients of this polynomial to be chosen
such that the polynomial is convex over the entire domain.

Note: Strictly speaking it would only have to be convex over the (automatically) extended working area
domain, the size of which is not always known before run-time.

Real working_area[:, :, :]
The working area array describes the polynomials bounding the convex set of allowed Q-H coordinates.
These polynomials typically arise from one of the following properties:

•Q-H curve at minimum pump speed

•Q-H curve at maximum pump speed

•Minimum required efficiency (e.g. 50%)

•Minimum and/or maximum input power constraint

•Cavitation constraints

•NPSH constraints

The first coordinate of the array is the polynomial number. For example, working_area[1, :, :]
would describe the first working area polynomial. The order of Q and H coefficients is the same as in
power_coefficients.

Real working_area_direction[:]
The polynomials in working_area describe the polynomials, but do not yet indicate what side of this
polynomial the Q-H combination has to be on. So for each of the polynomials in the working area we have
to specify whether the expression should evaluate to a positive expression (=1), or a negative expression
(=-1).

Note: It may become unnecessary to specify this in the future, if it is possible to figure out a way to
determine this automatically based on the polynomials and their crossing points.

Integer head_option = 0
What head to use for the pump head. This can be one of the following three options:

-1 The upstream head

0 The differential head (i.e. downstream head minus upstream head)

1 The downstream head.

Modelica::SIunits::Duration minimum_on = 0.0
The minimum amount of time in seconds a pump needs to be on before allowed to switch off again. This
applies to all pumps in this pumping station.

Note: Only multiples of the (equidistant) time step are allowed.

1.4. Modelica API 5

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Modelica::SIunits::Duration minimum_off = 0.0
The minimum amount of time in seconds a pump needs to be off before allowed to switch on again. This
applies to all pumps in this pumping station.

Note: Only multiples of the (equidistant) time step are allowed.

Modelica::SIunits::Energy start_up_energy = 0.0
The energy needed to start a pump. This will be multiplied with the energy price to calculate the costs.

Real start_up_cost = 0.0
Costs in e.g. EUR or kg CO2 associated with a pump start up. Many pump switches could for example
mean the pump life is shortened, or that more maintenance is needed. These could then be expressed in
monetary value, and associated with pump start up.

Important: Make sure that the units of this value are of the same units as start_up_energy times
the energy price.

Modelica::SIunits::Energy shut_down_energy = 0.0
Energy needed to shut down a pump. See equivalent parameter for pump start start_up_energy for
more information.

Real shut_down_cost = 0.0
Cost associated with a pump shutdown. See equivalent parameter for pump start start_up_cost for
more information.

Resistance

class Resistance : Deltares::ChannelFlow::Internal::HQTwoPort
Represents a single quadratic resistance object relating the head loss to the discharge:

𝑑𝐻 = 𝐶 ·𝑄2

Because a non-linear equality constraint is not allowed in convex optimization, this class is wrapped by the
Python API’s Resistance which turns it into two inequality constraints:

𝑑𝐻 ≥ 𝐶 ·𝑄2

lim
𝑄→0

𝑑𝐻 = 0

With minimization of pumping costs (i.e. power), the optimization results will satisfy the first inequality con-
straint as if it was an equality constraint, provided the power relationship of every pump is monotonically
increasing with H.

Note: Only positive flow is allowed (read: enforced).

Real C = 0.0

PumpingStation

class PumpingStation : Deltares::ChannelFlow::Internal::HQTwoPort
Represents a pumping station object, containing one or more Pump or Resistance objects.

6 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Integer n_pumps
The number of pumps contained in the pumping station. This is necessary to enforce the right size of e.g.
the pump_switching_matrix.

Integer pump_switching_matrix[n_pumps, n_pumps] = -999
Together with pump_switching_constraints describes which pumps are allowed to be on at the
same time. The default value of -999 will make Python fill it with the default matrix. This default matrix
implies that the second pump can only be on when the first pump is on, that the third pump can only be on
when the second pump is on, etc.

In matrix multiplication form

𝑏[:, 1] ≤ 𝐴 · 𝑥 ≤ 𝑏[:, 2]

with 𝐴 the pump_switching_matrix, 𝑏 the pump_switching_constraints, and 𝑥 the vector
of pump statuses:

𝑥 =

⎡⎢⎢⎢⎣
𝑆1

𝑆2

𝑆3

...

⎤⎥⎥⎥⎦
where 𝑆1 is the status of pump 1 (on = 1, off = 0).

So the default matrix, where a pump being on requires all lower numbered pumps to be on as well, can be
expressed as follows:

𝐴 =

⎡⎣ 0 0 0
1 −1 0
1 1 −2

⎤⎦
with pump_switching_constraints equal to:

𝑏 =

⎡⎣ −∞ ∞
0 ∞
0 ∞

⎤⎦
To allow all pumps to switch independently from each other, it is sufficient to set the coefficient matrix to
all zeros (e.g. pump_switching_matrix = fill(0, n_pumps, n_pumps)). For rows in the
matrix not containing any non- zero values, the accompanying constraints are not applied.

Note: Only square matrices allowed, i.e. a single constraint per pump.

Integer pump_switching_constraints[n_pumps, 2]
See discussion in pump_switching_matrix.

Weir

class Weir : Deltares::ChannelFlow::Internal::HQTwoPort
Represents a general movable-crest weir object described by the conventional weir equation (see e.g. Swamee,
Prabhata K. “Generalized rectangular weir equations.” Journal of Hydraulic Engineering 114.8 (1988): 945-
949.):

𝑄 =
2

3
𝐶𝐵

√︀
2𝑔 (𝐻 −𝐻𝑤)

1.5

1.4. Modelica API 7

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

where Q is the discharge of the weir, C is the weir discharge coefficient (very well approximated by 0.61), B is
the width of the weir, g is the acceleration of gravity, H is the water level, and 𝐻𝑤 is the level of the movable
weir crest. The equation assumes critical flow over the weir crest.

Modelica::SIunits::Length width
The physical width of the weir.

Modelica::SIunits::VolumeFlowRate q_min
The minimal possible discharge on this weir. It can be known from the physical characteristics of the
system. The linear approximation works the best if this is set as tight as possible. It is allowed to set it to
zero.

Modelica::SIunits::VolumeFlowRate q_max
The maximum physically possible flow over the weir. It should be set as tight as possible

Modelica::SIunits::Length hw_min
The minimal possible crest elevation.

Modelica::SIunits::Length hw_max
The maximum possible crest elevation.

Real weir_coef = 0.61
The discharge coefficient of the weir. Typically the default value of 0.61.

Examples

Pumping Station

Basic Pumping Station

Note: This example focuses on how to implement optimization for pumping stations in RTC-Tools using the Hy-
draulic Structures library. It assumes basic exposure to RTC-Tools. If you are a first-time user of RTC-Tools, please
refer to the RTC-Tools documentation.

8 Chapter 1. Contents:

http://rtc-tools.readthedocs.io/

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

The purpose of this example is to understand the technical setup of a model with the Hydraulic Structures Pumping
Station object, how to run the model, and how to interpret the results.

The scenario is the following: A pumping station with a single pump is trying to keep an upstream polder in an
allowable water level range. Downstream of the pumping station is a sea with a (large) tidal range, but the sea level
never drops below the polder level. The price on the energy market fluctuates, and the goal of the operator is to keep
the polder water level in the allowable range while minimizing the pumping costs.

The folder examples/pumping_station/basic contains the complete RTC-Tools optimization problem.

The Model

For this example, the model represents a typical setup for a polder pumping station in lowland areas. The inflow from
precipitation and seepage is modeled as a discharge (left side), with the total surface area / volume of storage in the
polder modeled as a linear storage. The downstream water level is assumed to not be (directly) influenced by the
pumping station, and therefore modeled as a boundary condition.

Operating the pumps to discharge the water in the polder consumes power, which varies based on the head difference
and total flow. In general, the lower the head difference or discharge, the lower the power needed to pump water.

The expected result is therefore that the model computes a control pattern that makes use of these tidal and energy
fluctuations, pumping water when the sea water level is low and/or energy is cheap. It is also expected that as little
water as necessary is pumped, i.e. the storage available in the polder is used to its fullest. Concretely speaking this
means that the water level at the last time step will be very close (or equal) to the maximum water level.

The model can be viewed and edited using the OpenModelica Connection Editor program. First load the
Deltares library into OpenModelica Connection Editor, and then load the example model, located at examples/
pumping_station/basic/model/Example.mo. The model Example.mo represents a simple water system
with the following elements:

• the polder canals, modeled as storage element Deltares.ChannelFlow.Hydraulic.Storage.
Linear,

• a discharge boundary condition Deltares.ChannelFlow.Hydraulic.BoundaryConditions.
Discharge,

• a water level boundary condition Deltares.ChannelFlow.Hydraulic.BoundaryConditions.
Level,

• a pumping station MyPumpingStation extending Deltares.HydraulicStructures.
PumpingStation.PumpingStation

1.5. Examples 9

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Note it is a nested model. In other words, we have defined our own MyPumpingStation model, which is in
itself part of the Example model. You can add classes (e.g. models) to an existing model in the OpenModelica
Editor by right clicking your current model (e.g. Example) –> New Modelica Class. Make sure to extend the
Deltares.HydraulicStructures.PumpingStation.PumpingStation class.

If we navigate into our nested MyPumpingStation model, we have the following elements:

• our single pump Deltares.HydraulicStructures.PumpingStation.Pump,

• a resistance Deltares.HydraulicStructures.PumpingStation.Resistance,

10 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

In text mode, the Modelica model looks as follows (with annotation statements removed):

1 model Example
2

3 model MyPumpingStation
4 extends Deltares.HydraulicStructures.PumpingStation.PumpingStation(
5 n_pumps=1
6);
7

8 Deltares.HydraulicStructures.PumpingStation.Pump pump1(
9 power_coefficients = {{3522.8, -27946.3, 54484.8},

10 {1665.43, 5827.81, 0.0},
11 {208.251, 0.0, 0.0}},
12

13 working_area = {{{ -5.326999, 54.050758, 0.000000},
14 { -1.0, 0.0, 0.0}},
15 {{ 0.000426, -0.001241, 2.564056},
16 { -1.0, 0.0, 0.0}},
17 {{ 2.577975, -5.203480, 0.000000},
18 { -1.0, 0.0, 0.0}},
19 {{ 13.219650, -3.097600, -7.551339},
20 { -1.0, 0.0, 0.0}}},
21

22 working_area_direction = {1, -1, -1, 1},
23

24 minimum_on=3.0*3600
25);
26 Deltares.HydraulicStructures.PumpingStation.Resistance resistance1(C=1.0);
27 equation
28 connect(HQUp, resistance1.HQUp);

1.5. Examples 11

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

29 connect(resistance1.HQDown, pump1.HQUp);
30 connect(pump1.HQDown, HQDown);
31 end MyPumpingStation;
32

33 // Elements in model flow chart
34 Deltares.ChannelFlow.Hydraulic.Storage.Linear storage(
35 A = 149000,
36 H_b = -1.0,
37 HQ.H(min = -0.7, max = 0.2),
38 V(nominal = 1E5)
39);
40 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Level sea;
41 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge inflow;
42 MyPumpingStation pumpingstation1;
43

44 // Input variables
45 input Modelica.SIunits.VolumeFlowRate Q_in(fixed = true);
46 input Modelica.SIunits.Position H_ext(fixed=true);
47

48 // Energy price is typically of units EUR/kWh (when optimizing for energy
49 // usage), but one can also choose for e.g. ton CO2/kWh to get the lowest
50 // CO2 output.
51 input Real energy_price(fixed=true);
52

53 // NOTE: Because we cannot flag each pump's .Q as "input", we need an extra
54 // variable to do this. Format is expected to be the fully specified name,
55 // with all dots replaced with underscores.
56 input Real pumpingstation1_pump1_Q;
57 // TODO: Move bounds to the mixin.
58 input Real pumpingstation1_resistance1_dH(min=0.0, max=10.0);
59

60 // Output variables
61 output Modelica.SIunits.Position storage_level;
62 output Modelica.SIunits.Position sea_level;
63 equation
64 connect(pumpingstation1.HQUp, storage.HQ);
65 connect(pumpingstation1.HQDown, sea.HQ);
66 connect(inflow.HQ, storage.HQ);
67 // Mapping of variables
68 inflow.Q = Q_in;
69 sea.H = H_ext;
70 pumpingstation1.pump1.Q = pumpingstation1_pump1_Q;
71 pumpingstation1.resistance1.dH = pumpingstation1_resistance1_dH;
72 storage_level = storage.HQ.H;
73 sea_level = H_ext;
74 end Example;

The attributes of pump1 are explained in detail in Pump.

In addition to the elements, two input variables pumpingstation1_pump1_Q and
pumpingstation1_resistance1_dH are also defined, with a set of equations matching them to their
dot-equivalent (e.g. pumpingstation1.pump1.Q).

Important: Because nested input symbols cannot be detected, it is necessary for the user to manually map this
symbol to an equivalent one with dots replaced with underscores.

12 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

The Optimization Problem

The python script consists of the following blocks:

• Import of packages

• Definition of water level goal

• Definition of the optimization problem class

– Constructor

– Passing a list of pumping stations

– Additional configuration of the solver

• A run statement

Importing Packages

For this example, the import block is as follows:

1 import os
2 import sys
3

4 from rtctools.optimization.collocated_integrated_optimization_problem import
→˓CollocatedIntegratedOptimizationProblem

5 from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin, Goal,
→˓StateGoal

6 from rtctools.optimization.modelica_mixin import ModelicaMixin
7 from rtctools.optimization.pi_mixin import PIMixin
8 from rtctools.util import run_optimization_problem
9 from rtctools_hydraulic_structures.pumping_station_mixin import \

Note that we are importing both PumpingStationMixin and PumpingStation from
rtctools_hydraulic_structures.pumping_station_mixin.

Water Level Goal

Next we define our water level range goal. It reads the desired upper and lower water levels from the optimiza-
tion problem class. For more information about how this goal maps to an objective and constraints, we refer to the
documentation of StateGoal.

13 class WaterLevelRangeGoal(StateGoal):
14 """
15 Goal that tries to keep the water level minum and maximum water level,
16 the values of which are read from the optimization problem.
17 """
18

19 state = 'storage.HQ.H'
20

21 priority = 1
22

23 def __init__(self, optimization_problem):
24 self.target_min = optimization_problem.wl_min
25 self.target_max = optimization_problem.wl_max
26

1.5. Examples 13

http://rtc-tools.readthedocs.io/en/latest/optimization/multi_objective.html#rtctools.optimization.goal_programming_mixin.StateGoal

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

27 _range = self.target_max - self.target_min
28 self.function_range = (self.target_min - _range, self.target_max + _range)
29

30 super(WaterLevelRangeGoal, self).__init__(optimization_problem)

Optimization Problem

Then we construct the optimization problem class by declaring it and inheriting the desired parent classes.

33 class Example(PumpingStationMixin, GoalProgrammingMixin, PIMixin, ModelicaMixin,
34 CollocatedIntegratedOptimizationProblem):

Now we define our pumping station objects, and store them in a local instance variable. We refer to this instance
variable from the abstract method pumping_stations() we have to override.

48

49 # Here we define a list of pumping stations, each consisting of a list
50 # of pumps. In our case, there is only one pumping station containing
51 # a single pump.
52 self.__pumping_stations = [PumpingStation(self, 'pumpingstation1',
53 pump_symbols=['pumpingstation1.pump1

→˓'])]

55 def pumping_stations(self):
56 # This is the method that we must implement. It has to return a list of
57 # PumpingStation objects, which we already initialized in the __init__
58 # function. So here we just return that list.
59 return self.__pumping_stations

Then we append our water level range goal to the list of path goals from our parents classes:

61 def path_goals(self):
62 goals = super(Example, self).path_goals()
63 goals.append(WaterLevelRangeGoal(self))
64 return goals

Note: The PumpingStationMixin sets a minimization goal for the costs, with priority equal to 999. There is no
need to specify a minimization goal of costs yourself.

Finally, we want to apply some additional configuration, reducing the amount of information the solver outputs:

66 def solver_options(self):
67 options = super(Example, self).solver_options()
68 options['print_level'] = 2
69 return options

Run the Optimization Problem

To make our script run, at the bottom of our file we just have to call the run_optimization_problem() method
we imported on the optimization problem class we just created.

14 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

155 run_optimization_problem(Example, base_folder='..')

The Whole Script

All together, the whole example script is as follows:

1 import os
2 import sys
3

4 from rtctools.optimization.collocated_integrated_optimization_problem import
→˓CollocatedIntegratedOptimizationProblem

5 from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin, Goal,
→˓StateGoal

6 from rtctools.optimization.modelica_mixin import ModelicaMixin
7 from rtctools.optimization.pi_mixin import PIMixin
8 from rtctools.util import run_optimization_problem
9 from rtctools_hydraulic_structures.pumping_station_mixin import \

10 PumpingStationMixin, PumpingStation, plot_operating_points
11

12

13 class WaterLevelRangeGoal(StateGoal):
14 """
15 Goal that tries to keep the water level minum and maximum water level,
16 the values of which are read from the optimization problem.
17 """
18

19 state = 'storage.HQ.H'
20

21 priority = 1
22

23 def __init__(self, optimization_problem):
24 self.target_min = optimization_problem.wl_min
25 self.target_max = optimization_problem.wl_max
26

27 _range = self.target_max - self.target_min
28 self.function_range = (self.target_min - _range, self.target_max + _range)
29

30 super(WaterLevelRangeGoal, self).__init__(optimization_problem)
31

32

33 class Example(PumpingStationMixin, GoalProgrammingMixin, PIMixin, ModelicaMixin,
34 CollocatedIntegratedOptimizationProblem):
35 """
36 An example showing the basic usage of the PumpingStationMixin. It consists of two

→˓goals:
37 1. Keep water level in the acceptable range.
38 2. Minimize power usage for doing so.
39 """
40

41 # Set the target minimum and maximum water levels.
42 wl_min, wl_max = (-0.5, 0)
43

44 def __init__(self, *args, **kwargs):
45 super(Example, self).__init__(*args, **kwargs)
46

47 self.__output_folder = kwargs['output_folder'] # So we can write our
→˓pictures to it

1.5. Examples 15

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

48

49 # Here we define a list of pumping stations, each consisting of a list
50 # of pumps. In our case, there is only one pumping station containing
51 # a single pump.
52 self.__pumping_stations = [PumpingStation(self, 'pumpingstation1',
53 pump_symbols=['pumpingstation1.pump1

→˓'])]
54

55 def pumping_stations(self):
56 # This is the method that we must implement. It has to return a list of
57 # PumpingStation objects, which we already initialized in the __init__
58 # function. So here we just return that list.
59 return self.__pumping_stations
60

61 def path_goals(self):
62 goals = super(Example, self).path_goals()
63 goals.append(WaterLevelRangeGoal(self))
64 return goals
65

66 def solver_options(self):
67 options = super(Example, self).solver_options()
68 options['print_level'] = 2
69 return options
70

71 def post(self):
72 super(Example, self).post()
73

74 results = self.extract_results()
75

76 # TODO: Currently we use hardcoded references to pump1. It would be
77 # prettier if we could generalize this so we can handle an arbitrary
78 # number of pumps. It would also be prettier to replace hardcoded
79 # references to e.g. pumpingstation1.pump1__power with something like
80 # pumpingstation1.pump.power(), if at all possible.
81

82 # Calculate the total amount of energy used. Note that QHP fit was
83 # made to power in W, and that our timestep is 1 hour.
84 powers = results['pumpingstation1.pump1__power'][1:]
85 total_power = sum(powers)/1000
86 print("Total power = {} kWh".format(total_power))
87

88 # Make plots
89 import matplotlib.dates as mdates
90 import matplotlib.pyplot as plt
91 import numpy as np
92

93 plt.style.use('ggplot')
94

95 def unite_legends(axes):
96 h, l = [], []
97 for ax in axes:
98 tmp = ax.get_legend_handles_labels()
99 h.extend(tmp[0])

100 l.extend(tmp[1])
101 return h, l
102

103 # Plot #1: Data over time. X-axis is always time.
104 f, axarr = plt.subplots(4, sharex=True)

16 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

105 # TODO: Do not use private API of PIMixin
106 times = self._timeseries_import.times
107

108 axarr[0].set_ylabel('Water level\n[m]')
109 axarr[0].plot(times, results['storage_level'], label='Polder',
110 linewidth=2, color='b')
111 axarr[0].plot(times, self.wl_max * np.ones_like(times), label='Polder Max',
112 linewidth=2, color='r', linestyle='--')
113 axarr[0].plot(times, self.wl_min * np.ones_like(times), label='Polder Min',
114 linewidth=2, color='g', linestyle='--')
115 ymin, ymax = axarr[0].get_ylim()
116 axarr[0].set_ylim(ymin - 0.1, ymax + 0.1)
117

118 axarr[1].set_ylabel('Water level\n[m]')
119 axarr[1].plot(times, self.get_timeseries('H_ext', 0).values, label='Sea',
120 linewidth=2, color='b')
121 ymin, ymax = axarr[1].get_ylim()
122 axarr[1].set_ylim(ymin - 0.5, ymax + 0.5)
123

124 axarr[2].set_ylabel('Energy price\n[EUR/kWh]')
125 axarr[2].step(times, self.get_timeseries('energy_price', 0).values, label=

→˓'Energy price',
126 linewidth=2, color='b')
127 ymin, ymax = axarr[2].get_ylim()
128 axarr[2].set_ylim(-0.1, ymax + 0.1)
129

130 axarr[3].set_ylabel('Discharge\n[$\mathdefault{m^3\!/s}$]')
131 axarr[3].step(times, results['pumpingstation1.pump1.Q'], label='Pump',
132 linewidth=2, color='b')
133 axarr[3].plot(times, self.get_timeseries('Q_in', 0).values, label='Inflow',
134 linewidth=2, color='g')
135 ymin, ymax = axarr[3].get_ylim()
136

137 axarr[3].set_ylim(-0.05 * (ymax - ymin), ymax * 1.1)
138 axarr[3].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
139 f.autofmt_xdate()
140

141 # Shrink each axis by 20% and put a legend to the right of the axis
142 for i in range(len(axarr)):
143 box = axarr[i].get_position()
144 axarr[i].set_position([box.x0, box.y0, box.width * 0.8, box.height])
145 axarr[i].legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)
146

147 # Output Plot
148 f.set_size_inches(8, 9)
149 plt.savefig(os.path.join(self._output_folder, 'overall_results.png'), bbox_

→˓inches='tight', pad_inches=0.1)
150

151 # Plot the working area with the operating points of the pump.
152 plot_operating_points(self, self._output_folder)
153

154 # Run
155 run_optimization_problem(Example, base_folder='..')

1.5. Examples 17

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Results

The results from the run are found in output/timeseries_export.xml. Any PI-XML-reading software can
import it.

The post() method in our Example class also generates some pictures to help understand what is going on.

First we have an overview of the relevant boundary conditions and control variables.

As expressed in the introduction of this example problem, we indeed see that the available buffer in the polder is used
to its fullest. The water level at the final time step is (almost) equal to the maximum water level.

Furthermore, we see that the pump only discharges water when the water level is low. It is interesting to see that the
optimal solution for costs means pumping at the lowest water level, even though the energy price is twice as high.

18 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Two Pumps

Note: This example focuses on how to put multiple pumps in a hydraulic model, and assumes basic exposure to
RTC-Tools and the PumpingStationMixin. To start with basics of pump modeling, see Basic Pumping Station.

The purpose of this example is to understand the technical setup of a model with multiple pumps.

The scenario of this example is equal to that of Basic Pumping Station, but with two pumps available instead of
one. The folder examples/pumping_station/two_pumps contains the complete RTC- Tools optimization
problem. The discussion below will focus on the differences from the Basic Pumping Station.

The Model

The pumping station object MyPumpingStation looks as follows in its diagram representation in OpenModelica:

When modeling multiple pumps of the same type, it makes sense to define a model, which can then be instantiated
into multiple objects. In the file Example.mo this can be seen in the submodel MyPump of MyPumpingStation:

1.5. Examples 19

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

8 model MyPump
9 extends Deltares.HydraulicStructures.PumpingStation.Pump(

10 power_coefficients = {{3522.8, -27946.3, 54484.8},
11 {1665.43, 5827.81, 0.0},
12 {208.251, 0.0, 0.0}},
13

14 working_area = {{{ -5.326999, 54.050758, 0.000000},
15 { -1.0, 0.0, 0.0}},
16 {{ 0.000426, -0.001241, 2.564056},
17 { -1.0, 0.0, 0.0}},
18 {{ 2.577975, -5.203480, 0.000000},
19 { -1.0, 0.0, 0.0}},
20 {{ 13.219650, -3.097600, -7.551339},
21 { -1.0, 0.0, 0.0}}},
22

23 working_area_direction = {1, -1, -1, 1},
24

25 minimum_on=3.0*3600);
26 end MyPump;

The data of this pump is exactly equal to that used in basic-pumping- station, but is not instantiated yet. To instantiate
two pumps using this data, we define two components pump1 and pump2:

28 MyPump pump1;
29 MyPump pump2;

Lastly, it is important not to forget to set the right number of pumps on the pumping station object:

3 model MyPumpingStation
4 extends Deltares.HydraulicStructures.PumpingStation.PumpingStation(
5 n_pumps=2
6);

The Optimization Problem

When using multiple pumps it is important to specify the right order of pumps. This order should match the order of
pumps in the pump_switching_matrix.

48

49 # Here we define a list of pumping stations, each consisting of a list
50 # of pumps. In our case, there is only one pumping station containing
51 # a single pump.
52 self.__pumping_stations = [PumpingStation(self, 'pumpingstation1',
53 pump_symbols=['pumpingstation1.pump1

→˓',
54 'pumpingstation1.pump2

→˓'])]

Weir

20 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Basic Weir

Note: This example focuses on how to implement a controllable weir in RTC-Tools using the Hydraulic Structures
library. It assumes basic exposure to RTC- Tools. If you are a first-time user of RTC-Tools, please refer to the
RTC-Tools documentation.

The weir structure is valid for two flow conditions:

• Free (critical) flow

• No flow

Warning: Submerged flow is not supported.

Modeling

Building a model with a weir

In this example we are considering a system of two branches and a controllable weir in between. On the upstream side
is a prescribed input flow, and on the downstream side is a prescribed output flow. The weir should move in such way
that the water level in both branches is kept within the desired limits.

To build this model, we need the following blocks:

• upstream and downstream discharge boundary conditions

• two branches

• a weir

By putting the blocks from the Modelica editor, the code is automatically generated (Note: this code snippet excludes
the lines about the annotation and location):

6 output Modelica.SIunits.Volume branch_2_water_level;
7 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge Upstream;
8 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge Downstream;
9 Deltares.ChannelFlow.Hydraulic.Reservoir.Linear Branch1(A = 50, H_b = 0,

→˓H(nominal=1, min=0, max=100));

1.5. Examples 21

http://rtc-tools.readthedocs.io/

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

10 Deltares.ChannelFlow.Hydraulic.Reservoir.Linear Branch2(A = 100, H_b = 0,
→˓H(nominal=1, min=0, max=100));

11 Deltares.HydraulicStructures.Weir.Weir weir1(hw_max = 3, hw_min = 1.7, q_max = 1, q_
→˓min = 0, width = 10);

For the weir block, the dimensions of the weir should be set. It can be done either by double clicking to the block, or
in the text editor. A controllable weir is represented with a weir block. This block has discharge and water level as
input, and also as output. When a block is placed, the following parameters can be given: - width: the width of the
crest in meters - hw_min: the minimum crest height - hw_max: the maximum crest height - q_min: the minimum
expected discharge - q_max: the maximum expected discharge

The last two values should be estimated in such way that the discharge will not be able to go outside these bounds.
However, for some linearization purposes, they should be as tight as possible. The values set by the text editor look
like the line above.

The input variables are the upstream and downstream (known) discharges. The control variable - the variable that the
algorithm changes until it achieves the desired results - is the discharge between the two branches. In practice, the
weir height is the variable that we are interested in, but as it depends on the discharge between the two branches and
the upstream water level, it will only be calculated in post processing. The input variables for the model are:

2 input Modelica.SIunits.VolumeFlowRate upstream_q_ext(fixed = true);
3 input Modelica.SIunits.VolumeFlowRate downstream_q_ext(fixed = true);
4 input Modelica.SIunits.VolumeFlowRate WeirFlow1(fixed = false, nominal=1, min=0,

→˓max=2.5);

Important: The min, max and nominal the values should always be meaningful. For nominal, set the value that the
variable most likely takes.

As output, we are interested in the water level in the two branches:

5 output Modelica.SIunits.Volume branch_1_water_level;
6 output Modelica.SIunits.Volume branch_2_water_level;

Now we have to define the equations. We have to set the boundary conditions. First the discharge should be read from
the external files:

21 Upstream.Q = upstream_q_ext;
22 Downstream.Q = downstream_q_ext;

And then the water level should be defined equal to the water level in the branch:

17 Branch1.HQDown.H=Branch1.H;
18 Branch2.HQDown.H=Branch2.H;

As we use reservoirs for branches, the variables we do not need should be zero:

19 Branch1.Q_turbine=0;
20 Branch2.Q_turbine=0;

Finally the outputs are set:

24 branch_1_water_level = Branch1.H;
25 branch_2_water_level = Branch2.H;

and the control variable as well:

22 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

23 WeirFlow1 = weir1.Q;

The whole model file looks like this:

1 model WeirExample
2 input Modelica.SIunits.VolumeFlowRate upstream_q_ext(fixed = true);
3 input Modelica.SIunits.VolumeFlowRate downstream_q_ext(fixed = true);
4 input Modelica.SIunits.VolumeFlowRate WeirFlow1(fixed = false, nominal=1, min=0,

→˓max=2.5);
5 output Modelica.SIunits.Volume branch_1_water_level;
6 output Modelica.SIunits.Volume branch_2_water_level;
7 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge Upstream;
8 Deltares.ChannelFlow.Hydraulic.BoundaryConditions.Discharge Downstream;
9 Deltares.ChannelFlow.Hydraulic.Reservoir.Linear Branch1(A = 50, H_b = 0,

→˓H(nominal=1, min=0, max=100));
10 Deltares.ChannelFlow.Hydraulic.Reservoir.Linear Branch2(A = 100, H_b = 0,

→˓H(nominal=1, min=0, max=100));
11 Deltares.HydraulicStructures.Weir.Weir weir1(hw_max = 3, hw_min = 1.7, q_max = 1, q_

→˓min = 0, width = 10);
12 equation
13 connect(weir1.HQDown, Branch2.HQUp);
14 connect(Branch1.HQDown, weir1.HQUp);
15 connect(Branch2.HQDown, Downstream.HQ);
16 connect(Upstream.HQ, Branch1.HQUp);
17 Branch1.HQDown.H=Branch1.H;
18 Branch2.HQDown.H=Branch2.H;
19 Branch1.Q_turbine=0;
20 Branch2.Q_turbine=0;
21 Upstream.Q = upstream_q_ext;
22 Downstream.Q = downstream_q_ext;
23 WeirFlow1 = weir1.Q;
24 branch_1_water_level = Branch1.H;
25 branch_2_water_level = Branch2.H;
26 end WeirExample;

Optimization

In this example, we would like to achieve that the water levels in the branches stay in the prescribed limits. The
easiest way to achieve this objective is through goal programming. We will define two goals, one goal for each branch.
The goal is that the water level should be higher than the given minimum and lower than the given maximum. Any
solution satisfying these criteria is equally attractive for us. In practice, in goal programming the goal violation value
is taken to the order’th power in the objective function (see: Goal Programming). In our example, we use the file
WeirExample.py. We define a class, and apart from the usual classes that we import for optimization problems,
we also have to import the class WeirMixin:

37 class WeirExample(WeirMixin, GoalProgrammingMixin, CSVMixin, ModelicaMixin,
→˓CollocatedIntegratedOptimizationProblem):

38

39 def __init__(self, *args, **kwargs):
40 super(WeirExample, self).__init__(*args, **kwargs)

Now we have to define the weirs: in quotation marks should be the same name as used for the Modelica model. Now
there is only one weir, and the definition looks like:

1.5. Examples 23

http://rtc-tools.readthedocs.io/en/latest/optimization/multi_objective.html

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

41 self.__weirs = [Weir(self, 'weir1')]

In case of more weirs, the names can be separated with a comma, for example:

self._weirs = [Weir('weir1'), Weir('weir2')]

Lastly we have to override the abstract method the returns the list of weirs:

44 def weirs(self):
45 return self.__weirs

Adding goals

In this example there are two branches connected with a weir. On the upstream side is a prescribed input flow, and
on the downstream side is a prescribed output flow. The weir should move in such way, that the water level in both
branches kept within the desired limits. We can add a water level goal for the upstream branch:

13 class WLRangeGoal_01(StateGoal):
14

15 def __init__(self, optimization_problem):
16 self.state = 'Branch1.H'
17 self.priority = 1
18

19 self.target_min = optimization_problem.get_timeseries('h_min_branch1')
20 self.target_max = optimization_problem.get_timeseries('h_max_branch1')
21

22 super(WLRangeGoal_01, self).__init__(optimization_problem)

A similar goal can be added to the downstream branch.

Setting the solver

As it is a mixed integer problem, it is handy to set some options to control the solver. In this example, we set the
allowable_gap to 0.005. It is used to specify the value of absolute gap under which the algorithm stops. This
is bigger than the default. This gives lower expectations for the acceptable solution, and in this way, the time of
iteration is less. This value might be different for every problem and might be adjusted a trial-and-error basis. For
more information, see the documentation of the BONMIN solver User’s Manual)

The solver setting is the following:

47 def solver_options(self):
48 options = super(WeirExample, self).solver_options()
49 options['allowable_gap'] = 0.005
50 options['print_level'] = 2
51 return options

Input data

In order to run the optimization, we need to give the boundary conditions and the water level bounds. This data is
given as time-series in the file timeseries_import.csv.

24 Chapter 1. Contents:

https://www.coin-or.org/Bonmin/option_pages/options_list_bonmin.html

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

The whole python file

The optimization file looks like:

1 from rtctools.optimization.collocated_integrated_optimization_problem \
2 import CollocatedIntegratedOptimizationProblem
3 from rtctools.optimization.goal_programming_mixin import GoalProgrammingMixin,

→˓StateGoal
4 from rtctools.optimization.modelica_mixin import ModelicaMixin
5 from rtctools.optimization.csv_mixin import CSVMixin
6 from rtctools.util import run_optimization_problem
7 from rtctools_hydraulic_structures.weir_mixin import WeirMixin, Weir, plot_operating_

→˓points
8

9 # There are two water level targets, with different priority.
10 # The water level should stay in the required range during all the simulation
11

12

13 class WLRangeGoal_01(StateGoal):
14

15 def __init__(self, optimization_problem):
16 self.state = 'Branch1.H'
17 self.priority = 1
18

19 self.target_min = optimization_problem.get_timeseries('h_min_branch1')
20 self.target_max = optimization_problem.get_timeseries('h_max_branch1')
21

22 super(WLRangeGoal_01, self).__init__(optimization_problem)
23

24

25 class WLRangeGoal_02(StateGoal):
26

27 def __init__(self, optimization_problem):
28 self.state = 'Branch2.H'
29 self.priority = 2
30

31 self.target_min = optimization_problem.get_timeseries('h_min_branch2')
32 self.target_max = optimization_problem.get_timeseries('h_max_branch2')
33

34 super(WLRangeGoal_02, self).__init__(optimization_problem)
35

36

37 class WeirExample(WeirMixin, GoalProgrammingMixin, CSVMixin, ModelicaMixin,
→˓CollocatedIntegratedOptimizationProblem):

38

39 def __init__(self, *args, **kwargs):
40 super(WeirExample, self).__init__(*args, **kwargs)
41 self.__weirs = [Weir(self, 'weir1')]
42 self.__output_folder = kwargs['output_folder'] # So we can write our

→˓pictures to it
43

44 def weirs(self):
45 return self.__weirs
46

47 def solver_options(self):
48 options = super(WeirExample, self).solver_options()
49 options['allowable_gap'] = 0.005
50 options['print_level'] = 2

1.5. Examples 25

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

51 return options
52

53 def path_goals(self):
54 goals = super(WeirExample, self).path_goals()
55 goals.append(WLRangeGoal_01(self))
56 goals.append(WLRangeGoal_02(self))
57 return goals
58

59 def post(self):
60 super(WeirExample, self).post()
61 results = self.extract_results()
62

63 # Make plots
64 import matplotlib.dates as mdates
65 import matplotlib.pyplot as plt
66 import numpy as np
67 import os
68

69 plt.style.use('ggplot')
70

71 def unite_legends(axes):
72 h, l = [], []
73 for ax in axes:
74 tmp = ax.get_legend_handles_labels()
75 h.extend(tmp[0])
76 l.extend(tmp[1])
77 return h, l
78

79 # Plot #1: Data over time. X-axis is always time.
80 f, axarr = plt.subplots(4, sharex=True)
81

82 # TODO: Do not use private API of CSVMixin
83 times = self._timeseries_times
84 weir = self.weirs()[0]
85

86 axarr[0].set_ylabel('Water level\n[m]')
87 axarr[0].plot(times, results['branch_1_water_level'], label='Upstream',
88 linewidth=2, color='b')
89 axarr[0].plot(times, self.get_timeseries('h_min_branch1').values, label=

→˓'Upstream Max',
90 linewidth=2, color='r', linestyle='--')
91 axarr[0].plot(times, self.get_timeseries('h_max_branch1').values, label=

→˓'Upstream Min',
92 linewidth=2, color='g', linestyle='--')
93 ymin, ymax = axarr[0].get_ylim()
94 axarr[0].set_ylim(ymin - 0.1, ymax + 0.1)
95

96 axarr[1].set_ylabel('Water level\n[m]')
97 axarr[1].plot(times, results['branch_2_water_level'], label='Downstream',
98 linewidth=2, color='b')
99 axarr[1].plot(times, self.get_timeseries('h_max_branch2').values, label=

→˓'Downstream Max',
100 linewidth=2, color='r', linestyle='--')
101 axarr[1].plot(times, self.get_timeseries('h_min_branch2').values, label=

→˓'Downstream Min',
102 linewidth=2, color='g', linestyle='--')
103 ymin, ymax = axarr[1].get_ylim()
104 axarr[1].set_ylim(ymin - 0.1, ymax + 0.1)

26 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

105

106 axarr[2].set_ylabel('Discharge\n[$\mathdefault{m^3\!/s}$]')
107 # We need the first point for plotting, but its value does not
108 # necessarily make sense as it is not included in the optimization.
109 weir_flow = results['WeirFlow1']
110 weir_height = results["weir1_height"]
111 minimum_water_level_above_weir = (weir_flow-weir.q_nom)/weir.slope + weir.h_

→˓nom
112

113 minimum_weir_height = minimum_water_level_above_weir - ((weir_flow/weir.c_
→˓weir)**(2.0/3.0))

114

115 minimum_weir_height[0] = minimum_weir_height[1]
116

117 weir_flow = results['WeirFlow1']
118 weir_flow[0] = weir_flow[1]
119

120 axarr[2].step(times, weir_flow, label='Weir',
121 linewidth=2, color='b')
122 axarr[2].step(times, self.get_timeseries('upstream_q_ext').values, label=

→˓'Inflow',
123 linewidth=2, color='r', linestyle='--')
124 axarr[2].step(times, -1 * self.get_timeseries('downstream_q_ext').values,

→˓label='Outflow',
125 linewidth=2, color='g', linestyle='--')
126 ymin, ymax = axarr[2].get_ylim()
127 axarr[2].set_ylim(-0.1, ymax + 0.1)
128

129 weir_height = results["weir1_height"]
130 weir_height[0] = weir_height[1]
131

132 axarr[3].set_ylabel('Weir height\n[m]')
133 axarr[3].step(times, weir_height, label='Weir',
134 linewidth=2, color='b')
135 ymin, ymax = axarr[3].get_ylim()
136 ymargin = 0.1 * (ymax - ymin)
137 axarr[3].set_ylim(ymin - ymargin, ymax + ymargin)
138 axarr[3].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
139 f.autofmt_xdate()
140

141 # Shrink each axis by 20% and put a legend to the right of the axis
142 for i in range(len(axarr)):
143 box = axarr[i].get_position()
144 axarr[i].set_position([box.x0, box.y0, box.width * 0.8, box.height])
145 axarr[i].legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False)
146

147 # Output Plot
148 f.set_size_inches(8, 9)
149 plt.savefig(os.path.join(self.__output_folder, 'overall_results.png'),
150 bbox_inches='tight', pad_inches=0.1)
151

152 plot_operating_points(self, self._output_folder, results)
153

154

155 if __name__ == "__main__":
156 run_optimization_problem(WeirExample)

1.5. Examples 27

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

Results

After successful optimization the results are printed in the time series export file. After running this example, the
following results are expected:

The file found in the example folder includes some visualization routines.

Interpretation of the results

The results of this simulation are summarized in the following figure:

28 Chapter 1. Contents:

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

In this example, the input flow increases after 6 minutes, while the downstream flow is kept constant. While the inflow
drops after 6 minutes, the result is not seen in the upstream branch, because the weir moves up to compensate it. After
the weir moved up, the water level drops in the downstream branch.

1.5. Examples 29

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

30 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

31

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

32 Chapter 2. Indices and tables

Python Module Index

r
rtctools_hydraulic_structures.pumping_station_mixin,

2
rtctools_hydraulic_structures.weir_mixin,

4

33

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

34 Python Module Index

Index

Symbols
__init__() (rtctools_hydraulic_structures.pumping_station_mixin.PumpingStation

method), 3

D
Deltares::HydraulicStructures::PumpingStation::Pump

(C++ class), 4
Deltares::HydraulicStructures::PumpingStation::Pump::head_option

(C++ member), 5
Deltares::HydraulicStructures::PumpingStation::Pump::minimum_off

(C++ member), 5
Deltares::HydraulicStructures::PumpingStation::Pump::minimum_on

(C++ member), 5
Deltares::HydraulicStructures::PumpingStation::Pump::power_coefficients

(C++ member), 4
Deltares::HydraulicStructures::PumpingStation::Pump::shut_down_cost

(C++ member), 6
Deltares::HydraulicStructures::PumpingStation::Pump::shut_down_energy

(C++ member), 6
Deltares::HydraulicStructures::PumpingStation::Pump::start_up_cost

(C++ member), 6
Deltares::HydraulicStructures::PumpingStation::Pump::start_up_energy

(C++ member), 6
Deltares::HydraulicStructures::PumpingStation::Pump::working_area

(C++ member), 5
Deltares::HydraulicStructures::PumpingStation::Pump::working_area_direction

(C++ member), 5
Deltares::HydraulicStructures::PumpingStation::PumpingStation

(C++ class), 6
Deltares::HydraulicStructures::PumpingStation::PumpingStation::n_pumps

(C++ member), 6
Deltares::HydraulicStructures::PumpingStation::PumpingStation::pump_switching_constraints

(C++ member), 7
Deltares::HydraulicStructures::PumpingStation::PumpingStation::pump_switching_matrix

(C++ member), 7
Deltares::HydraulicStructures::PumpingStation::Resistance

(C++ class), 6
Deltares::HydraulicStructures::PumpingStation::Resistance::C

(C++ member), 6

Deltares::HydraulicStructures::Weir::Weir (C++ class), 7
Deltares::HydraulicStructures::Weir::Weir::hw_max

(C++ member), 8
Deltares::HydraulicStructures::Weir::Weir::hw_min

(C++ member), 8
Deltares::HydraulicStructures::Weir::Weir::q_max (C++

member), 8
Deltares::HydraulicStructures::Weir::Weir::q_min (C++

member), 8
Deltares::HydraulicStructures::Weir::Weir::weir_coef

(C++ member), 8
Deltares::HydraulicStructures::Weir::Weir::width (C++

member), 8
discharge() (rtctools_hydraulic_structures.pumping_station_mixin.Pump

method), 2
discharge() (rtctools_hydraulic_structures.pumping_station_mixin.Resistance

method), 3
discharge() (rtctools_hydraulic_structures.weir_mixin.Weir

method), 4

H
head() (rtctools_hydraulic_structures.pumping_station_mixin.Pump

method), 2
head_loss() (rtctools_hydraulic_structures.pumping_station_mixin.Resistance

method), 3

P
plot_operating_points() (in module rtc-

tools_hydraulic_structures.pumping_station_mixin),
3

Pump (class in rtctools_hydraulic_structures.pumping_station_mixin),
2

pumping_stations() (rtc-
tools_hydraulic_structures.pumping_station_mixin.PumpingStationMixin
method), 3

PumpingStation (class in rtc-
tools_hydraulic_structures.pumping_station_mixin),
3

PumpingStationMixin (class in rtc-
tools_hydraulic_structures.pumping_station_mixin),

35

RTC-Tools Hydraulic Structures Documentation, Release 0.0.1

3
pumps() (rtctools_hydraulic_structures.pumping_station_mixin.PumpingStation

method), 3

R
Resistance (class in rtc-

tools_hydraulic_structures.pumping_station_mixin),
3

resistances() (rtctools_hydraulic_structures.pumping_station_mixin.PumpingStation
method), 3

rtctools_hydraulic_structures.pumping_station_mixin
(module), 2

rtctools_hydraulic_structures.weir_mixin (module), 4

W
Weir (class in rtctools_hydraulic_structures.weir_mixin),

4
WeirMixin (class in rtc-

tools_hydraulic_structures.weir_mixin),
4

weirs() (rtctools_hydraulic_structures.weir_mixin.WeirMixin
method), 4

36 Index

	Contents:
	Getting Started
	Support
	Python API
	Modelica API
	Examples

	Indices and tables
	Python Module Index

